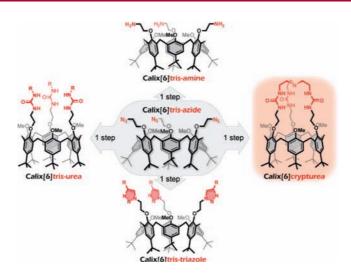
ORGANIC LETTERS

2009 Vol. 11, No. 3 673–676

Synthesis of the First Calix[6]crypturea via a Versatile Tris-azide Precursor


Mickaël Ménand and Ivan Jabin*

Laboratoire de Chimie Organique, Université Libre de Bruxelles (U.L.B.), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium

ijabin@ulb.ac.be

Received November 26, 2008

ABSTRACT

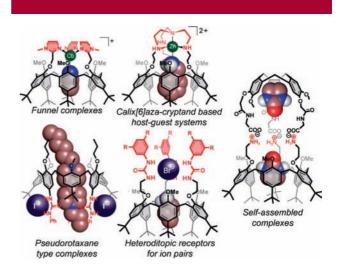
Various nitrogenous calix[6]arene based receptors have been synthesized in one step from a new $C_{3\nu}$ symmetrical calix[6]arene intermediate decorated with azido groups. Hence, the first calix[6]crypturea has been obtained in high yield through a unique one-pot process consisting of a domino Staudinger/aza-Wittig reaction followed by a [1 + 1] macrocyclization reaction with a tripodal amine. The conformational properties and some of the host—guest properties of the new calix[6]arene derivatives have been studied by NMR spectroscopy.

Calixarenes are intensively studied as building blocks for the design of tailored molecular receptors. In this context, C_{3v} symmetrical calix[6] arenes bearing a nitrogenous recognition site in close proximity to the hydrophobic cavity are particularly attractive because they can exhibit remarkable host—guest properties toward charged or neutral species (Figure 1). Indeed, calix[6] arenes with three appended azaheterocyclic ligands at the level of the narrow rim were used for the elaboration of biomimetic metal complexes that can coordinate a variety of organic guests inside the cavity (i.e., funnel complexes). The strong coordination of either anions

or organic ion pairs (i.e., ammonium salts) was evidenced with heteroditopic calix[6]tris-urea based receptors.³ When the ureido groups are introduced on the wide rim, pseudorotaxane-type complexes were produced.⁴ The protonation of calix[6]tris-amines by carboxylic acids led to trications that assemble with the counteranions to form supramolecular ion-paired hosts for polar neutral molecules.⁵ Calix[6]arenes possessing a tripodal aza-cryptand cap (i.e., polyamino or

^{(1) (}a) Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Eds.; *Calixarenes 2001*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. (b) Mandolini, L., Ungaro, R., Eds.; *Calixarenes in Action*; Imperial College Press: London, 2000.

^{(2) (}a) Sénèque, O.; Rager, M.-N.; Giorgi, M.; Reinaud, O. *J. Am. Chem. Soc.* **2000**, *122*, 6183. (b) Rondelez, Y.; Rager, M.-N.; Duprat, A.; Reinaud, O. *J. Am. Chem. Soc.* **2002**, *124*, 1334–1340.


⁽³⁾ Hamon, M.; Ménand, M.; Le Gac, S.; Luhmer, M.; Dalla, V.; Jabin, I. *J. Org. Chem.* **2008**, *73*, 7067–7071.

^{(4) (}a) Arduini, A.; Ferdani, R.; Pochini, A.; Secchi, A.; Ugozzoli, F. *Angew. Chem., Int. Ed.* **2000**, *39*, 3453–3456. (b) Arduini, A.; Credi, A.; Faimani, G.; Massera, C.; Pochini, A.; Secchi, A.; Semeraro, M.; Silvi, S.; Ugozzoli, F. *Chem. Eur. J.* **2008**, *14*, 98–106.

polyamido), namely, the calix[6]aza-cryptands, were shown to exhibit versatile host-guest properties toward either charged or neutral species thanks to the presence of the azacryptand cap that preorganizes the cavity and provides a tunable binding site.⁶ The syntheses of all these calixarene based receptors required efficient methodologies for the introduction of nitrogenous functional groups on the phenolic positions. In particular, the grafting of a tripodal aza-cap through [1 + 1] macrocyclization reactions or of multiple functional groups in a single step must proceed in high yields. In this regard, we envisioned that a tris-azido-calixarene could constitute a valuable synthetic intermediate since the azide group offers a straigthforward access to a wide range of nitrogenous groups such as amine, imine, amide, urea, or triazoles. Moreover, new classes of calix[6]aza-cryptands, such as calix[6]cryptureas, could be obtained through [1 + 1] macrocyclization reactions between a tris-azido-calixarene and tripodal aza-subunits. It is noteworthy that there is a growing interest in azido-calixarenes, as illustrated by their recent use in the syntheses of sophisticated architectures such as glycoclusters, ananotubes, and ditopic metal complexes. 10

This paper describes the synthesis of the versatile intermediate calix[6]tris-azide ${\bf 1}$ and the one-step access to various calixarene based receptors, one of them (i.e., the calix[6]crypturea) being obtained through a unique one-pot process involving a domino Staudinger/aza-Wittig type reaction followed by an efficient [1+1] macrocyclization reaction.

Calix[6]tris-azide **1** was synthesized in 93% yield by alkylation of the 1,3,5-tris-methoxycalix[6]arene $(X_6H_3Me_3)^{11}$ using an excess of 2-azidoethyl-4-methylbenzenesulfonate ¹² (Scheme 1). Starting from this readily available precursor **1**, the one-step syntheses of various calixarene based receptors were tested. Our first aim was a more economical and shorter access to calix[6]tris-amine **2**, which is an important building block for the elaboration of multiple receptors. ^{3,5b-d,6b,c,e,g,13} Its previous three-step synthesis from $X_6H_3Me_3$ (79% overall yield) involved a costly reduction of

Figure 1. Examples of host—guest systems obtained with $C_{3\nu}$ symmetrical calix[6]arenes bearing nitrogenous binding sites. $^{2-6}$

a calix[6]tris-amide intermediate with a very large excess of BH₃·THF (30 equiv). ^{6e} The catalytic hydrogenation of calix[6]tris-azide **1** afforded calix[6]tris-amine **2** in almost quantitative yield (91% overall yield from $X_6H_3Me_3$). Reduction of compound **1** can also be performed in similar yield using Staudinger reduction conditions (PPh₃/H₂O).

Calix[6]tris-azide **1** proved to be an excellent candidate for the well-known copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. Indeed, the reaction with either phenylacetylene or 2,2-dimethylbutyne provided the calix[6]tris-phenyltriazole **3** and calix[6]tris-*tert*-butyltriazole **4** in high yields. These two compounds constitute the first examples of $C_{3\nu}$ symmetrical calix[6]arenes decorated with triazole subunits on the narrow rim. Considering the known coordinating properties of triazoles toward metal ions^{10,14} or anions, ¹⁵ the calix[6]tris-triazoles **3** and **4** seem very promising for the design of new funnel complexes.

Calix[6]tris-urea receptors were also easily accessible from calix[6]tris-azide 1 using a domino Staudinger/aza-Wittig reaction (PPh₃/CO₂), leading in situ to the reactive intermediate calix[6]tris-isocyanate, and a subsequent addition of an amine derivative. Thus, the use of either aromatic (PhNH₂) or aliphatic (BnNH₂) amines afforded the corresponding calix[6]tris-phenylurea 5 and calix[6]tris-benzylurea 6 in 82% and 79% yields, respectively. Finally, this remarkable one-pot process was attempted with a tripodal amine in order to develop the access to calix[6]cryptureas, a new family of calixcryptands that should possess reinforced properties toward anions and ion pairs in comparison to the less preorganized calix[6]tris-urea receptors. It is noteworthy

674 Org. Lett., Vol. 11, No. 3, 2009

^{(5) (}a) Darbost, U.; Zeng, X.; Giorgi, M.; Jabin, I. *J. Org. Chem.* **2005**, 70, 10552–10560. (b) Darbost, U.; Giorgi, M.; Hucher, N.; Jabin, I.; Reinaud, O. *Supramol. Chem.* **2005**, *17*, 243–250. (c) Le Gac, S.; Marrot, J.; Reinaud, O.; Jabin, I. *Angew. Chem., Int. Ed.* **2006**, *45*, 3123–3126. (d) Le Gac, S.; Luhmer, M.; Reinaud, O.; Jabin, I. *Tetrahedron* **2007**, *63*, 10721–10730.

^{(6) (}a) Jabin, I.; Reinaud, O. J. Org. Chem. 2003, 68, 3416–3419. (b) Darbost, U.; Giorgi, M.; Reinaud, O.; Jabin, I. J. Org. Chem. 2004, 69, 4879–4884. (c) Zeng, X.; Hucher, N.; Reinaud, O.; Jabin, I. J. Org. Chem. 2004, 69, 6886–6889. (d) Darbost, U.; Rager, M-N.; Petit, S.; Jabin, I.; Reinaud, O. J. Am. Chem. Soc. 2005, 127, 8517–8525. (e) Le Gac, S.; Zeng, X.; Girardot, C.; Jabin, I. J. Org. Chem. 2006, 71, 9233–9236. (f) Zeng, X.; Coquière, D.; Alenda, A.; Garrier, E.; Prangé, T.; Li, Y.; Reinaud, O.; Jabin, I. Chem. Eur. J. 2006, 12, 6393–6402. (g) Le Gac, S.; Jabin, I. Chem. Eur. J. 2008, 14, 548–557.

⁽⁷⁾ For a review on organic azides, see:Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int Ed. 2005, 44, 5188–5240.

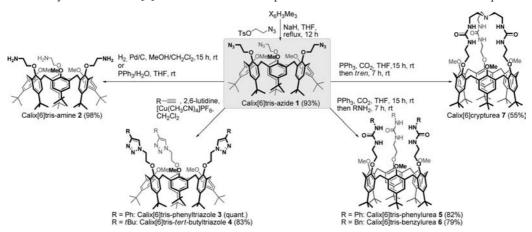
⁽⁸⁾ Vecchi, A.; Melai, B.; Marra, A.; Chiappe, C.; Dondoni, A. J. Org. Chem. 2008, 73, 6437–6440.

⁽⁹⁾ Pérez-Aldemar, J.-A.; Abraham, H.; Sánchez, C.; Rissanen, K.; Prados, P.; de Mendoza, J. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 1009–1011.

⁽¹⁰⁾ Colasson, B.; Save, M.; Milko, P.; Roithov, J.; Schröder, D.; Reinaud, O. Org. Lett. 2007, 9, 4987–4990.

⁽¹¹⁾ Arduini, A.; Casnati, A. In *Macrocycle Synthesis: A Practical Approach*; Parker, D. Ed.; Oxford University Press: Oxford, 1996; pp 145–173.

⁽¹²⁾ Carboni, B.; Vaultier, M.; Carrié, R. Tetrahedron 1987, 43, 1799–1810.


⁽¹³⁾ Darbost, U.; Sénèque, O.; Li, Y.; Bertho, G.; Marrot, J.; Rager, M.-N.; Reinaud, O.; Jabin, I. *Chem. Eur. J.* **2007**, *13*, 2078–2088.

⁽¹⁴⁾ Bergbreiter, D. E.; Hamilton, N.; Koshti, N. M. J. Am. Chem. Soc. 2007, 129, 10666–10667.

^{(15) (}a) Juwarker, H.; Lenhardt, J. M.; Pham, D. M.; Craig, S. L. *Angew. Chem., Int. Ed.* **2008**, *47*, 3740–3743. (b) Kumar, A.; Pandey, P. S. *Org. Lett.* **2008**, *10*, 165–168.

⁽¹⁶⁾ Kovács, J.; Pintér, I.; Messmer, A.; Tóth, G. Carbohydr. Res. 1985, 141, 57–65.

Scheme 1. Synthesis of Calix[6]tris-azide 1 and One-Step Access to Various Calixarene Based Receptors 2-7

that [1 + 1] macrocyclization reactions between tripodal partners have never been achieved through this one-pot process, ¹⁷ and only few examples of tris-urea cryptands have been reported in the literature. 4b,18 Thus, the domino Staudinger/aza-Wittig procedure followed by the addition of 1 equiv of tris(2-aminoethyl)amine (tren) led to calix[6]crypturea 7 in 36% isolated yield from 1 (Table 1, entry 4). To estimate if an anion template effect could improve the yield of the macrocyclization, the reaction was carried out in presence of tetra-n-butylammonium (TBA⁺) salts of the F⁻, Cl⁻, and Br[−] anions (Table 1, entries 1–3). Except in the case of F[−] that led to a complex mixture of products, ¹⁹ the presence of a halide did not affect significantly the reaction yield (Table 1, entries 2-4). In addition, the macrocyclization was carried out upon high dilution conditions. To our delight, the simultaneous addition of tren and calix[6]tris-isocyanate (freshly synthesized through the domino Staudinger/aza-Wittig process) over 12 h in THF (final concn = 2 mM) increased the yield of compound 7 to 55% (Table 1, entry 5).

Table 1. Influence of Concentration and Presence of Halides on the [1 + 1] Macrocylization Reaction

entry	\mathbf{X}^{-a}	${\rm concn}\; ({\rm mM})^b$	yield of $7 (\%)^c$
1	\mathbf{F}^{-}	20	nd^d
2	Cl^-	20	34
3	${ m Br}^-$	20	38
4		20	36
5		2	55

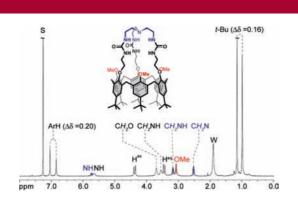
 a TBA $^+$ salts were used. b Concentration of 1 and tren. c Isolated yields after FC purification. d Not detected.

The conformational properties of all of the new compounds 1, 3, 4, 6, and 7 were studied by NMR spectroscopy. In CDCl₃, 1, 3, and 4 displayed a $C_{3\nu}$ symmetrical major flattened cone conformation ($\Delta\delta_{t\text{Bu}} > 0.31$ ppm) with the OMe groups directed toward the inside of the cavity (δ_{OMe}

= 2.63, 2.45, and 2.19 ppm, respectively), the bulkier azide and triazole groups being expelled from the cavity (Scheme 1).²⁰ In contrast, calix[6]tris-benzylurea **6** adopts a solventdependent cone conformation. Indeed, while a broad $C_{3\nu}$ symmetrical NMR spectrum characteristic of a major straight cone conformation was observed in CDCl₃ ($\Delta \delta_{tBu} = 0.14$ ppm, $\delta_{\rm OMe} = 3.12$ ppm), spectra recorded in competing solvent (either CD₃OD or acetone- d_6) led to sharper $C_{3\nu}$ symmetrical patterns typical of flattened cone conformations with the OMe groups pointing inside the cavity ($\delta_{\rm OMe} = 2.31$ and 2.47 ppm, respectively). This conformational flip of the aromatic units indicates the presence of an intramolecular hydrogen bonding network between the urea groups in non competing solvents.²¹ In the case of the calix[6]crypturea 7, a C_{3v} symmetrical straight cone conformation was observed either in competing (MeOD) or non-competing solvents (CDCl₃, see Figure 2) ($\Delta \delta_{tBu} = 0.15$ and 0.16 ppm, respectively). This different conformational behavior, as compared to 6, is clearly due to the rigid covalent cap that prevents the expulsion of the urea groups of 7 in protic

Org. Lett., Vol. 11, No. 3, 2009

⁽¹⁷⁾ However, polyazido intermediates have been already involved in [1 + 1] macrocyclization reactions, leading either to tris-imine, trisphosphazide, or tris-triazole derivatives; see, respectively: ref 9. Alajarı'n, M.; Molina, P.; López-Lázaro, A.; Foces-Foces, C. Angew. Chem., Int. Ed. Engl. 1997, 36, 67–70. Morales-Sanfrutos, J.; Ortega-Muñoz, M.; Lopez-Jaramillo, J.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F. J. Org. Chem. 2008, 73, 7772–7774. For macrocyclization reactions between polyamines and calix[4]arenes, see:Hamdi, A.; Lee, Y. H.; Kim, Y.; Kusumahastuti, D. K. A.; Ohto, K.; Abidi, R.; Vicens, J. Tetrahedron Lett. 2009, 50, 540–543, and references therein.


^{(18) (}a) Lukyanenko, N. G.; Bogatsky, A. V.; Kirichenko, T. I.; Scherbakov, S. V.; Nazarova, N. Y. *Synthesis* **1984**, *13*, 7–137. (b) Potvin, P. G.; Wong, M. H. *Can. J. Chem.* **1988**, *66*, 2914–2919. (c) Lukyanenko, N. G.; Kirichenko, T. I.; Scherbakov, S. V. *J. Chem. Soc., Perkin Trans. 1* **2002**, 2347–2351. (d) Halime, Z.; Lachkar, M.; Matsouki, N.; Charalambidis, G.; di Vaira, M.; Coutsolelos, A. G.; Boitrel, B. *Tetrahedron* **2006**, *62*, 3056–3064.

⁽¹⁹⁾ The desired compound 7 was not detected on the ¹H NMR spectrum of the crude material.

⁽²⁰⁾ The spectra of **3** and **4** also show a minor C_s symmetrical species consistant with the 1,2,3-alternate conformation. This conformer is often observed with derivatives of $X_oH_3Me_3$ bearing bulky groups. See:van Duynhoven, J. P. M.; Janssen, R. G.; Verboom, W.; Franken, S. M.; Casnati, A.; Pochini, A.; Ungaro, R.; de Mendoza, J.; Nieto, P. M.; Prados, P.; Reinhoudt, D. N. *J. Am. Chem. Soc.* **1994**, *116*, 5814–5822.

⁽²¹⁾ Similar conformational properties were observed for 5. See ref 3.

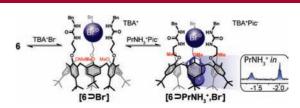

solvents. This rigidification of the structure was also demonstrated through a VTNMR study (from 258 to 328 K), which showed that the conformation of 7 was only slightly affected by the temperature. Moreover, the ArCH₂ signals appeared as a sharp pair of doublets over the whole temperature range, indicating that the aza-cap completely prevents the cone—cone interconversion.

Figure 2. 1 H NMR spectrum (CDCl₃, 300 MHz, 298 K) of **7**. W = water, S = solvent.

Finally, the ability of calix[6]tris-ureas **5** and **6** to bind an organic ion pair (i.e., $PrNH_3^+Br^-$) in $CDCl_3$ was compared. First, 1H NMR titration of compound **6** with TBA^+Br^- clearly showed H-bonding interactions between the anion and the urea groups of **6** since a strong downfield shift of the NH protons was observed. Monitoring of the chemical shift variation of the OMe groups, which undergo a shielding effect upon complexation, afforded an association constant $K = 10 \text{ M}^{-1}.^{22}$ Thus, as compared to **5** ($K = 160 \text{ M}^{-1}$), calix[6]tris-urea **6** displays a much weaker ability to complex bromide, a priori due to the decrease of the urea acidity and the increase of steric hindrance close to the binding site.

Whereas the ¹H NMR spectrum of **6** remained unchanged upon addition of 1 equiv of propylammonium picrate (PrNH₃+Pic⁻), the subsequent addition of 1 equiv of TBA+Br⁻ led to two new species corresponding to the complexes $[6\supset Br^-]$ and $[6\supset PrNH_3^+, Br^-]$. ²⁴ Indeed, the

Figure 3. Host—guest properties of **6.** Inset: High-field region of the ¹H NMR spectrum (CDCl₃, 258 K) of **6** in presence of PrNH₃+Pic⁻ (1 equiv) and TBA+Br⁻ (1 equiv).

presence of high-field signals showed the intracavity complexation of PrNH₃⁺ simultaneously to the anion (Inset, Figure 3). This result highlights that the inclusion of PrNH₃⁺ is directed by a cooperative two-step binding process with the anion playing the role of allosteric effector (Figure 3).³ Furthermore, under these conditions (i.e., 1 equiv of PrNH₃⁺Pic⁻ and TBA⁺Br⁻), the fraction of included PrNH₃⁺ was found to be 55%. This is significantly under the value measured for receptor **5** (i.e., 86%),³ highlighting the importance of the nature of the urea substituent on the recognition process of the ion pair.

In conclusion, calix[6]tris-azide 1 constitutes a useful intermediate for the efficient one-step synthesis of a variety of nitrogenous calix[6]arene based receptors. Calix[6]crypturea 7 was obtained through a unique one-pot process consisting of a domino Staudinger/aza-Wittig reaction followed by a [1+1] macrocyclization reaction with a tripodal amine. The syntheses of diversely substituted calix[6]tris-urea derivatives gave some insights into the ion-pair recognition properties of these heteroditopic receptors, pointing out the crucial role of the urea substituent on the binding process.

Acknowledgment. This research was supported by the Agence Nationale de la Recherche (Calixzyme Project ANR-05-BLAN-0003) and the Bureau des Relations internationales (U.L.B.).

Supporting Information Available: General experimental methods; 1D, 2D NMR spectra of all new compounds; ¹H VTNMR and titration studies. This material is available free of charge via the Internet at http://pubs.acs.org.

OL8027384

⁽²²⁾ See Supporting Information.

⁽²³⁾ The complexation process is fast on the NMR time scale.

⁽²⁴⁾ A ¹H VTNMR study of this mixture of complexes was undertaken between 258 and 328 K (see Supporting Information).